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Phase transitions in lattices of coupled chaotic maps and their dependence
on the local Lyapunov exponent
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We study the continuous phase transitions in lattices of chaotic maps recently found by Miller and Huse. It
is believed that in these lattices the order-disorder transition is generated by competition b@mndeeng
diffusion and(disordering local chaos. As a test of this idea, we check whether the local Lyapunov exponent
of the system behaves as a univocal extra control parameter for criticality. We verify the presence of phase
transitions for a whole family of maps, both as function of coupling and of an internal parameter related to their
chaoticity. We find that the critical coupling parameter is not a one-to-one function of the local Lyapunov
exponent, which implies that this exponent cannot be used in general as control parameter for the transition.
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PACS numbg(s): 05.45+b, 05.70.Jk, 64.60.Cn

[. INTRODUCTION associated with the divergence of the correlation length was
found to ber=0.887(18), where the numkey between pa-
There has been a growing interest in the dynamics ofentheses corresponds to the uncertainty in the lastsjigit
locally coupled chaotic systems, since the discovery of longth€ guantity. This value is somewhat smaller than that of the
range collective behavior in high-dimensional cellular au-'SiNg model,viing=1. This difference in universality class

tomata[1,2] and in coupled map lattic]. A remarkable seem to be related to the simultaneous updating used in the
' . ) realization of the system, a type of updating that is not pos-
example of this type of coherent evolution was found by

. . X . ible for M lo simulati f equilibri istical
Miller and Husg[ 4], who considered a two-dimensior(@D) ?T:tédeelg[rﬂ. onte Carlo simulations of equilibrium statistica

lattice of odd-symmetric chaotic maps, and found a continu- Here we are concerned with the relationship between lo-
ous phase transition, which originally seemed to fit withincg| chaos and the location of the critical coupling. Assume
the 2D lIsing universality class. This contradicted previoushat we start the evolution of our lattice with an ordered
theoretical workg5], that had shown that in general collec- configuration. For identical maps, the source of disorder is
tive nontrivial phenomena could not happen in locally their chaoticity, which introduces fluctuations in the order
coupled chaotic systems, with the exception of period-2 osparameter at small scales. If the coupling is not large enough,
cillations. In particular, for the case of phase transitions, ithese fluctuations grow and destroy the large scale order of
was argued that droplets of any given phase could not growhe system. Therefore, one may expect that lattices made of
beyond certain size, since their growife., the ordering pro- very chaotic oscillators will have large critical couplings,

ces$ was at most linear in time, while locdtlisordering ~ Wwhile a small coupling should be enough to order lattices
fluctuations, which were chaotic in Origin, went exponen-made of almost nonchaotic elements. In order to test this

tially fast in time. idea, one has to decide first how to give a quantitative mean-
In this system a diffusive dynamics is introduced by aing to the expressions “very chaotic” and “almost noncha-
coupling between nearest neighbors. This interaction is lin@tic” wWe just used. An approach to this point was given in
ear, and is quantified by a real coupling parameter. In thd€'ms of the Lyapunov dimension of the lattigg}, but the
map, due to its odd symmetry, the typical orbit has an equarIeSUItS were not conclusive. In this work we will consider
probability of falling in positive or negative values, so when mstead. a simpler point of view: Taking as the source of
we take the sign of each site as a local order parantatgin fluctuations the chaoticity of t.he maps, one may as well take
the Ising modal its time average is zero for isolated maps. @S & measure of chaos their own Lyapunov exponents. In

The time average of the order parametiafined as the sum favor of this approach we have the fact that it is difficult—at
of the local order parameteis zero in the absence of cou- |€ast for our present understanding of the phenomena—to
pling, and remains zero for low coupling values. Above gdecide whether changes in the global measures of chaos are

critical value of the coupling, the order parameter become 0 be taken as control parameters, like the usual quantities

nonzero. These particular phase transitions, and some othet0!ume, temperatujethat one consider as experimentally

that are closely related, were explored by Marcq, Cheautel controllable in ordinary statistical mechanics, or as response
Manneville, who found that they do not fall entirely in the functions (like specific heat, compressibility, efcFor the

2D Ising universality clasgs]. In particular, the exponent local Lyapunov exponent this difficulty does not exist.

Il. MODEL
*Electronic address: sastre@kin.cieamer.conacyt.mx The model proposed by Miller and Huse consists of a
"Electronic address: gperez@kin.cieamer.conacyt.mx two-dimensional lattice of diffusively coupled maps, where
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the maps are piecewise linear and are defined by 1
( 1
—2-3y for —1lsys-— 3
1 1
P(y)= 1 3y for — -<y<z (2.1
3 3
1 $(y)
2—-3y for Esysl_

\

This map is odd symmetric, and its Lyapunov exponent is
equal to In 3. A typical trajectory in this map spends, in
average, equal times in the<0 and they>0 ranges. The
2D coupled system obeys the discrete time evolution rule
given by

-1 . I

Vit =(1-49)p(yi )+l A(Yi 1)+ b(Yij-1) -1 -a y a 1
t t
+ ¢(yi+1,j) + ‘f’(yi*ld)]' (2.2) FIG. 1. Local map of the extended Miller-Huse model. We keep

L . . . . the original odd-symmetric form but change the slopes. With this it
wheret indicates temporal evolution, the indexeandj are s possible to change continuously the Lyapunov exponent. Here
for the site on the lattice, and is the diffusive coupling ,=0.65.

parameter. Since the values\of; need to be constrained to

the interval[ —1,1], we require that &g<7. Wheng=0  variablesy; ; be used instead of their signs, one finds just a
each site is isolated, and the global Lyapunov exponent othange in the size afm,). This does not affect the critical
the system corresponds to the Lyapunov exponent of thbehavior at al[12].
map.

In order to make an analogy with the equilibrium Ising A. Extended Miller-Huse model
models, an order parameter is defined in the following way:

. L In order to explore the relationship between local chaos
An instantaneous order paramem‘Lr is given by b b

and the phase transition, we need to find a family of chaotic
1 maps whose Lyapunov exponent can be changed continu-
th:N 2 Sgr(yit,j). (2.3  ously, which means that it is better not to use maps with
i quadratic extrema. We also want to keep the odd symmetry
of the map. One way of satisfying these conditions is to
The sum is over all lattice siteB| is the number of sites, and change the slopes of the Miller-Huse piecewise linear map
the subscriptL corresponds to the lateral lattice size without changing its odd parity. We propose the map shown
(N=L?). From here one obtains the order parameter as @ Fig. 1,
time average,

f 2 a+1 for —1=y<_
t=to+ty _a—1y+ po y or sSys-—«a
(M)=r—"7 t:Et Iml, (2.9 1
Y p(y)=1 ~y for —a<y<a (2
wheret, is a transient andl, is the time interval over which > bl
the average is taken. Finally, a susceptibijty is given by —— y——= for asy<1
i y ,
the definition \a—1" a-1
t=tg+t, 112 where we introduce the internal parameterbounded to
=12 — m|—(m 2| , (25 [01], and the updating follows Ed2.2). Whena=0, the
AL t,+1 t;to (Ime|=(m) map degenerates into two lines, both with slogé(y)|=2,

and the Lyapunov exponent is therefotéa=0)=In 2. In
following the definition of generalized susceptibilities of the other extreme of the range the map becomes diagonal,
thermodynamics quantities of the standard statistical meand we obtain\ («=1)=0. The Miller-Huse model corre-
chanics[9]. _ _ sponds toa=%, with A(a=1%)=In 3.

For zero coupling, the chaotic character of the maps en-
sures that the order parameter is zero. As the valug isf
increased, a continuous phase transition is found, with a criti-
cal valueg.=0.205 34(2)[6,10,11. The critical exponents One factor that makes this choice of the map a convenient
of this system are not quite those corresponding to the 2@ne is that its Lyapunov exponent can be given as an exact
Ising model, giving in this way a universality class for simul- analytical expression in the internal parameterThis is
taneous updating6]. In case that the actual values of the done using the invariant distribution for the map, which can

B. Lyapunov exponent as function ofa
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FIG. 2. Local Lyapunov exponent vs internal parameiefhe R R R
extremes values ot are as expected. The maximum Ancorre- 600 —
= 57
sponds t0a=%, which gives the original Miller-Huse map. B . f = 20 ]
- AL =31 .
B x L =25 -
be calculated using the method given in Réf3] (see also 400 -
Refs. [14,15)). The result for this invariant distribution is XL .
p(y)=3. Integrating the slopes with the invariant distribu- _ i
tion, we obtain 200 -
ek e s gy
A=(1-a)ln —aln a. (2.7 = \Qg_- o]
a—l 0IIIIIIIIIIIIIIIIIIIII-T—I.%I
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The behavior of\(«) is continuous and smoottiFig. 2), oy
QRIS Fr T T T ¥ T T T T T T T FIG. 4. Order parameter and susceptibility as functiongr.of
= . : ] The coupling parameter is fixed gt=0.205 342). A continuous
0.21 - ) | ] phase transition can be observed, where in both sides of the transi-
) C - ) : . tion point the local Lyapunov exponent decreases. From cumulants
0.205 :_ * _: (not shown we obtaina,=0.33331).
gc - : 1. . and its values for=0, 1, and; are as expected. Notice that
0.2 2 : ' B the Miller-Huse map has the maximum value possiblextor
- | .
C . 3
0.195 - | R ; ll. PHASE TRANSITIONS
C ' R~ . . .
0.19 | . The goal now is to find the relation between the local
e Lyapunov exponent and the critical coupling.. Numeri-
1.1 T+ 7T T] cal simulations were carried out to establish this dependence,
C | . and the infinite-size transition point was determined using
B : i the cumulant methofi16,17], which is based on the fourth
1.095 - I ] order cumulant ) given by
- | -
- [ . t\4
- . ((mp)")
A 1.09 | | ] U =1- ———ras. (3.2
- | ] ST 3((m)?)?
I A
1.085 - : A As the control parameter tends to the critical poibt,
) - : ] —U*, whereU* is a value independent of the size system.
B | i The estimated value for two-dimensional Ising models is
1.08 T T T N T l ' R T N A U* :061—0611616]
0.3 0.35 0.4
o A. Critical coupling versus local Lyapunov exponent

FIG. 3. Critical coupling and local Lyapunov exponent as a . We have calculated the critical coupling for coupled lat-
function of a. There are two values of the critical coupling for same tices of maps of type2.6), for seven values of close to
value of the local Lyapunov exponent. For visualization, we use gand including a= 3. These critical values were located us-
spline in the upper grapldot line). The dashed line marks the value ing the already mentioned cumulant method. For this we
a=3. Error bars for the critical coupling are smaller that the mark-used lattices of sizek =25, 31, 40, and 57, with helical
ers used. boundary conditionfl18]. The transient and integration times
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changed for different lattice sizes. In all cases we checkednd the susceptibility for this lattice. Their behavior is con-
that both times were long enough for convergence. Typicasistent with a continuous phase transitioncagrows. The
values were above ¥and 16 iterations for transient and critical value of @ was located using cumulants, and gave
run times, respectively. We assigned a random number, withy,=0.33331), asexpected.
uniform distribution within the range—0.95, 0.9, on each
lattice site as an initial condition. We located the crossing V. CONCLUSIONS AND FINAL COMMENTS
points of the different cumulant curves, which were approxi- ) o )
mated using parabolic fitting for the five points closest to the Starting from a heuristic analogy between chaotic fluctua-
crossing. These crossings clustered on very nagoanges.  ons in our system and thermal fluctuations in a thermody-
The results are given in Fig. 3, and it is clear from this figureN@mical system in equilibrium, one may have expected the
that the critical coupling for the lattice is not a one-to-onelocal Lyapunov exponent to behave like a temperature, being
function of the local Lyapunov exponent. Therefore, the lo-in this way a well defined control parameter for coupled
cal chaoticity is not determinant on the long range behaviofhaotic lattices. Contrary to this expectation, we have found
of the lattice. that the relationship between local Lyapunov exponents and
critical couplings for phase transitions in chaotic lattices is
B. Behavior as a function ofa not one to one. Therefore, two systems with th_e same cou-
pling, and whose elements are equally chaotic, can have
As an extra test that the critical coupling for the lattice is completely different collective behaviors. This either means
not a one-to-one function of the local Lyapunov exponentthat the use of a local measure for chaos is too naive, or that
we have verified the existence of a phase transition as ehaos itself, although a needed element for the order-disorder
function of « for a given value ofj. This phase transition is transition in these systems, is less important for its phase
suggested by the phase diagram given in Fig. 3, where ongiagram than some other properties of the model. As an extra
should get a disorder-order transition @gs increased for a confirmation of this assertion, we have shown how the same
giveng. order-disorder phase transition can also happen as a function
Here we have chosen forthe value given fog, in Ref.  of internal parameters of the model, for a situation where the
[11] for the Miller-Huse model. According to Fig. 3, a con- local maps become less chaotic at both sides of the critical
tinuous phase transition should be presentati, with the  point.

ordered phase appearing fer-3. Notice that for these val-
ues we have that the local maps become less chaotic in both
sides of the expected critical. We wish to thank P. Marcq for sending us his unpub-

The calculations were carried out with the same latticdished work. F. S. would like to thank the CONACyT for
sizes, transient and runtime of the previous ones. The resulfsllowship support. This work was supported by CONACyT
are given in Fig. 4, which shows both the order parametethrough Grant Nos. 4178-E9405 and 1421P-E.
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