
PHYSICAL REVIEW E MAY 1998VOLUME 57, NUMBER 5
Phase transitions in lattices of coupled chaotic maps and their dependence
on the local Lyapunov exponent

Francisco Sastre* and Gabriel Pe´rez†
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Apartado Postal 73 ‘‘Cordemex,’’ 97310 Me´rida, Yucatán, México

~Received 15 October 1997!

We study the continuous phase transitions in lattices of chaotic maps recently found by Miller and Huse. It
is believed that in these lattices the order-disorder transition is generated by competition between~ordering!
diffusion and~disordering! local chaos. As a test of this idea, we check whether the local Lyapunov exponent
of the system behaves as a univocal extra control parameter for criticality. We verify the presence of phase
transitions for a whole family of maps, both as function of coupling and of an internal parameter related to their
chaoticity. We find that the critical coupling parameter is not a one-to-one function of the local Lyapunov
exponent, which implies that this exponent cannot be used in general as control parameter for the transition.
@S1063-651X~98!08904-1#

PACS number~s!: 05.45.1b, 05.70.Jk, 64.60.Cn
o
ng
u

by

nu
in
u

c-
lly
o
,
ro

n

a
lin
th
u
n

s

-
a
e

th

e

as

the
s

the
os-
al

lo-
me
ed
r is
er
gh,
r of
e of
s,
es
this
an-
a-
in

er
of
ke

. In
at
—to
s are
ities
ly
nse

f a
re
I. INTRODUCTION

There has been a growing interest in the dynamics
locally coupled chaotic systems, since the discovery of lo
range collective behavior in high-dimensional cellular a
tomata@1,2# and in coupled map lattices@3#. A remarkable
example of this type of coherent evolution was found
Miller and Huse@4#, who considered a two-dimensional~2D!
lattice of odd-symmetric chaotic maps, and found a conti
ous phase transition, which originally seemed to fit with
the 2D Ising universality class. This contradicted previo
theoretical works@5#, that had shown that in general colle
tive nontrivial phenomena could not happen in loca
coupled chaotic systems, with the exception of period-2
cillations. In particular, for the case of phase transitions
was argued that droplets of any given phase could not g
beyond certain size, since their growth~i.e., the ordering pro-
cess! was at most linear in time, while local~disordering!
fluctuations, which were chaotic in origin, went expone
tially fast in time.

In this system a diffusive dynamics is introduced by
coupling between nearest neighbors. This interaction is
ear, and is quantified by a real coupling parameter. In
map, due to its odd symmetry, the typical orbit has an eq
probability of falling in positive or negative values, so whe
we take the sign of each site as a local order parameter~as in
the Ising model! its time average is zero for isolated map
The time average of the order parameter~defined as the sum
of the local order parameter! is zero in the absence of cou
pling, and remains zero for low coupling values. Above
critical value of the coupling, the order parameter becom
nonzero. These particular phase transitions, and some o
that are closely related, were explored by Marcq, Chate´, and
Manneville, who found that they do not fall entirely in th
2D Ising universality class@6#. In particular, the exponentn
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associated with the divergence of the correlation length w
found to ben50.887(18), where the number~s! between pa-
rentheses corresponds to the uncertainty in the last digit~s! of
the quantity. This value is somewhat smaller than that of
Ising model,n Ising51. This difference in universality clas
seem to be related to the simultaneous updating used in
realization of the system, a type of updating that is not p
sible for Monte Carlo simulations of equilibrium statistic
models@7#.

Here we are concerned with the relationship between
cal chaos and the location of the critical coupling. Assu
that we start the evolution of our lattice with an order
configuration. For identical maps, the source of disorde
their chaoticity, which introduces fluctuations in the ord
parameter at small scales. If the coupling is not large enou
these fluctuations grow and destroy the large scale orde
the system. Therefore, one may expect that lattices mad
very chaotic oscillators will have large critical coupling
while a small coupling should be enough to order lattic
made of almost nonchaotic elements. In order to test
idea, one has to decide first how to give a quantitative me
ing to the expressions ‘‘very chaotic’’ and ‘‘almost nonch
otic’’ we just used. An approach to this point was given
terms of the Lyapunov dimension of the lattice@8#, but the
results were not conclusive. In this work we will consid
instead a simpler point of view: Taking as the source
fluctuations the chaoticity of the maps, one may as well ta
as a measure of chaos their own Lyapunov exponents
favor of this approach we have the fact that it is difficult—
least for our present understanding of the phenomena
decide whether changes in the global measures of chao
to be taken as control parameters, like the usual quant
~volume, temperature! that one consider as experimental
controllable in ordinary statistical mechanics, or as respo
functions ~like specific heat, compressibility, etc.!. For the
local Lyapunov exponent this difficulty does not exist.

II. MODEL

The model proposed by Miller and Huse consists o
two-dimensional lattice of diffusively coupled maps, whe
5213 © 1998 The American Physical Society



t i
in

u

o

t
th

g
ay

d
e
s

of
m

e

ri

2
l-
e

t a
l

os
tic

tinu-
ith
etry
to
ap
wn

nal,

ient
xact

an

ep
s it
ere
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the maps are piecewise linear and are defined by

f~y!55
2223y for 21<y<2

1

3

3y for 2
1

3
,y,

1

3

223y for
1

3
<y<1.

~2.1!

This map is odd symmetric, and its Lyapunov exponen
equal to ln 3. A typical trajectory in this map spends,
average, equal times in they,0 and they.0 ranges. The
2D coupled system obeys the discrete time evolution r
given by

yi , j
t115~124g!f~yi , j

t !1g@f~yi , j 11
t !1f~yi , j 21

t !

1f~yi 11,j
t !1f~yi 21,j

t !#, ~2.2!

wheret indicates temporal evolution, the indexesi and j are
for the site on the lattice, andg is the diffusive coupling
parameter. Since the values ofyi , j need to be constrained t

the interval@21,1#, we require that 0<g< 1
4 . When g50

each site is isolated, and the global Lyapunov exponen
the system corresponds to the Lyapunov exponent of
map.

In order to make an analogy with the equilibrium Isin
models, an order parameter is defined in the following w
An instantaneous order parametermL

t is given by

mL
t 5

1

N (
i , j

sgn~yi , j
t !. ~2.3!

The sum is over all lattice sites,N is the number of sites, an
the subscript L corresponds to the lateral lattice siz
(N5L2). From here one obtains the order parameter a
time average,

^mL&5
1

tn11 (
t5t0

t5t01tn

umL
t u, ~2.4!

wheret0 is a transient andtn is the time interval over which
the average is taken. Finally, a susceptibilityxL is given by
the definition

xL5L2S 1

tn11 (
t5t0

t5t01tn

~ umL
t u2^mL&!2D 1/2

, ~2.5!

following the definition of generalized susceptibilities
thermodynamics quantities of the standard statistical
chanics@9#.

For zero coupling, the chaotic character of the maps
sures that the order parameter is zero. As the value ofg is
increased, a continuous phase transition is found, with a c
cal valuegc50.205 34(2)@6,10,11#. The critical exponents
of this system are not quite those corresponding to the
Ising model, giving in this way a universality class for simu
taneous updating@6#. In case that the actual values of th
s
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variablesyi , j be used instead of their signs, one finds jus
change in the size of̂mL&. This does not affect the critica
behavior at all@12#.

A. Extended Miller-Huse model

In order to explore the relationship between local cha
and the phase transition, we need to find a family of chao
maps whose Lyapunov exponent can be changed con
ously, which means that it is better not to use maps w
quadratic extrema. We also want to keep the odd symm
of the map. One way of satisfying these conditions is
change the slopes of the Miller-Huse piecewise linear m
without changing its odd parity. We propose the map sho
in Fig. 1,

f~y!55
2

a21
y1

a11

a21
for 21<y<2a

1

a
y for 2a,y,a

2

a21
y2

a11

a21
for a<y<1,

~2.6!

where we introduce the internal parametera bounded to
@0,1#, and the updating follows Eq.~2.2!. When a50, the
map degenerates into two lines, both with slopeuf8(y)u52,
and the Lyapunov exponent is thereforel(a50)5 ln 2. In
the other extreme of the range the map becomes diago
and we obtainl(a51)50. The Miller-Huse model corre-

sponds toa5 1
3 , with l(a5 1

3 )5 ln 3.

B. Lyapunov exponent as function ofa

One factor that makes this choice of the map a conven
one is that its Lyapunov exponent can be given as an e
analytical expression in the internal parametera. This is
done using the invariant distribution for the map, which c

FIG. 1. Local map of the extended Miller-Huse model. We ke
the original odd-symmetric form but change the slopes. With thi
is possible to change continuously the Lyapunov exponent. H
a50.65.
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57 5215PHASE TRANSITIONS IN LATTICES OF COUPLED . . .
be calculated using the method given in Ref.@13# ~see also
Refs. @14,15#!. The result for this invariant distribution i

r(y)5 1
2 . Integrating the slopes with the invariant distrib

tion, we obtain

l5~12a!lnU 2

a21U2a ln a. ~2.7!

The behavior ofl~a! is continuous and smooth~Fig. 2!,

FIG. 3. Critical coupling and local Lyapunov exponent as
function ofa. There are two values of the critical coupling for sam
value of the local Lyapunov exponent. For visualization, we us
spline in the upper graph~dot line!. The dashed line marks the valu

a5
1
3 . Error bars for the critical coupling are smaller that the ma

ers used.

FIG. 2. Local Lyapunov exponent vs internal parametera. The
extremes values ofa are as expected. The maximum inl corre-

sponds toa5
1
3 , which gives the original Miller-Huse map.
and its values fora50, 1, and1
3 are as expected. Notice tha

the Miller-Huse map has the maximum value possible forl.

III. PHASE TRANSITIONS

The goal now is to find the relation between the loc
Lyapunov exponent and the critical coupling (gc). Numeri-
cal simulations were carried out to establish this depende
and the infinite-size transition point was determined us
the cumulant method@16,17#, which is based on the fourth
order cumulant (UL) given by

UL512
^~mL

t !4&

3^~mL
t !2&2 . ~3.1!

As the control parameter tends to the critical point,UL
→U* , whereU* is a value independent of the size syste
The estimated value for two-dimensional Ising models
U* .0.61– 0.6116@16#.

A. Critical coupling versus local Lyapunov exponent

We have calculated the critical coupling for coupled la
tices of maps of type~2.6!, for seven values ofa close to

~and including! a5 1
3 . These critical values were located u

ing the already mentioned cumulant method. For this
used lattices of sizesL525, 31, 40, and 57, with helica
boundary conditions@18#. The transient and integration time

a

-

FIG. 4. Order parameter and susceptibility as functions ofa.
The coupling parameter is fixed atg50.205 34(2). A continuous
phase transition can be observed, where in both sides of the tr
tion point the local Lyapunov exponent decreases. From cumul
~not shown! we obtainac50.3333(1).
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changed for different lattice sizes. In all cases we chec
that both times were long enough for convergence. Typ
values were above 105 and 106 iterations for transient and
run times, respectively. We assigned a random number,
uniform distribution within the range@20.95, 0.95#, on each
lattice site as an initial condition. We located the cross
points of the different cumulant curves, which were appro
mated using parabolic fitting for the five points closest to
crossing. These crossings clustered on very narrowg ranges.
The results are given in Fig. 3, and it is clear from this figu
that the critical coupling for the lattice is not a one-to-o
function of the local Lyapunov exponent. Therefore, the
cal chaoticity is not determinant on the long range behav
of the lattice.

B. Behavior as a function ofa

As an extra test that the critical coupling for the lattice
not a one-to-one function of the local Lyapunov expone
we have verified the existence of a phase transition a
function ofa for a given value ofg. This phase transition is
suggested by the phase diagram given in Fig. 3, where
should get a disorder-order transition asa is increased for a
given g.

Here we have chosen forg the value given forgc in Ref.
@11# for the Miller-Huse model. According to Fig. 3, a con

tinuous phase transition should be present ata5 1
3 , with the

ordered phase appearing fora. 1
3 . Notice that for these val-

ues we have that the local maps become less chaotic in
sides of the expected criticala.

The calculations were carried out with the same latt
sizes, transient and runtime of the previous ones. The re
are given in Fig. 4, which shows both the order parame
be
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and the susceptibility for this lattice. Their behavior is co
sistent with a continuous phase transition asa grows. The
critical value of a was located using cumulants, and ga
ac50.3333(1), asexpected.

IV. CONCLUSIONS AND FINAL COMMENTS

Starting from a heuristic analogy between chaotic fluct
tions in our system and thermal fluctuations in a thermo
namical system in equilibrium, one may have expected
local Lyapunov exponent to behave like a temperature, be
in this way a well defined control parameter for coupl
chaotic lattices. Contrary to this expectation, we have fou
that the relationship between local Lyapunov exponents
critical couplings for phase transitions in chaotic lattices
not one to one. Therefore, two systems with the same c
pling, and whose elements are equally chaotic, can h
completely different collective behaviors. This either mea
that the use of a local measure for chaos is too naive, or
chaos itself, although a needed element for the order-diso
transition in these systems, is less important for its ph
diagram than some other properties of the model. As an e
confirmation of this assertion, we have shown how the sa
order-disorder phase transition can also happen as a fun
of internal parameters of the model, for a situation where
local maps become less chaotic at both sides of the crit
point.
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